中国组织工程研究 ›› 2019, Vol. 23 ›› Issue (18): 2865-2871.doi: 10.3969/j.issn.2095-4344.1733

• 药物控释材料 drug delivery materials • 上一篇    下一篇

同轴打印双交联海藻酸钠/丝素蛋白血管网络支架

李宁宁1,徐铭恩2,3,索海瑞2,3,王  玲2,3
  

  1. 1杭州电子科技大学生命信息与仪器工程学院,浙江省杭州市  310018;2杭州电子科技大学自动化学院,浙江省杭州市  310018;3浙江省医学信息与生物三维打印重点实验室,浙江省杭州市  310018
  • 收稿日期:2019-02-12 出版日期:2019-06-28 发布日期:2019-06-28
  • 通讯作者: 徐铭恩,博士后,教授,杭州电子科技大学自动化学院,浙江省杭州市 310018;浙江省医学信息与生物三维打印重点实验室,浙江省杭州市 310018
  • 作者简介:李宁宁,女,1993年生,河南省商丘市人,汉族,杭州电子科技大学在读硕士,主要从事生物3D打印方面的研究。
  • 基金资助:

    国家重点研发计划(2018YFB1105600),项目负责人:王玲;国家自然科学基金(61675059),项目负责人:王玲

Coaxial printed double crosslinked alginate/silk fibroin vascular network scaffold

Li Ningning1, Xu Mingen2, 3, Suo Hairui2, 3, Wang Ling2, 3 
  

  1. 1College of Life Information and Instrument Engineering, 2College of Automation, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang Province, China; 3Zhejiang Provincial Key Lab of Medical Information and Three-Dimensional Bio-Printing, Hangzhou 310018, Zhejiang Province, China
  • Received:2019-02-12 Online:2019-06-28 Published:2019-06-28
  • Contact: Xu Mingen, PhD, Professor, College of Automation, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang Province, China; Zhejiang Provincial Key Lab of Medical Information and Three-Dimensional Bio-Printing, Hangzhou 310018, Zhejiang Province, China
  • About author:Li Ningning, Master candidate, College of Life Information and Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang Province, China
  • Supported by:

    the National Key Research & Development Program of China, No. 2018YFB1105600 (to WL); the National Natural Science Foundation of China, No. 61675059 (to WL)

摘要:

文章快速阅读:

 

文题释义:
生物3D打印和同轴挤出系统:生物3D打印为组织工程领域中人工组织和器官的构建提供全新的技术可能,构建类血管结构用于大块细胞组织体的营养及废物的运输,是生物3D打印面临的一个关键问题。同轴挤出系统可制造封装细胞的中空通道,结合生物3D打印系统,叠层制造含营养通道网络的组织。
丝素蛋白:在生物领域,除去丝胶的丝纤维称为丝素蛋白,其天然氨基酸成分保证丝素蛋白在体内降解后能被人体无害吸收,成型丝素蛋白材料的分子结构中含有β-折叠结构,这种结构决定了丝素蛋白体内分子的晶体含量和强度,通过控制材料内的晶体含量即可控制材料的各种属性,提供更优异的机械性能、更长的降解时间及可控的药物释放速率等。
 
 
背景:构建组织工程类血管结构是复杂组织和器官再生的关键,利用3D打印技术构建类血管结构成为目前研究的热点。
目的:利用生物3D打印和同轴挤出系统,采用海藻酸钠和丝素蛋白组成的生物墨水,同轴打印具有高度有序排列的可灌注血管结构。
方法:以含5%海藻酸钠与5%丝素蛋白的混合溶液作为生物墨水,以含5%氯化钙与13%F127的混合溶液作为交联剂,采用生物打印机打印海藻酸钠/丝素蛋白凝胶,进行光学相干层析成像与扫描电镜观察。将含5%海藻酸钠与5%丝素蛋白的混合溶液与人肝癌细胞C3A悬液混合,作为生物墨水,以含5%氯化钙与13%F127的混合溶液作为交联剂,采用生物打印机打印含细胞的海藻酸钠/丝素蛋白凝胶,置入培养基中培养24 h后进行Calcein-AM染色,荧光显微镜下观察。
结果与结论:①光学相干层析成像:支架结构为多层复合的中空管道,凝胶丝具有完整的中空结构,且各通道之间互相贯通,这种结构类似血管的中空通道,有利于营养物质和代谢废物的运输;②扫描电镜:可见并行排列的中空管道结构,管道边界清晰,直径在400 μm左右,且边界之间形成了由F127去除导致的微孔结构;③荧光显微镜:细胞均匀分散在通道两侧的材料中,细胞在支架中的生长情况良好,细胞存活率高于95%;④结果表明:基于同轴喷头的生物3D打印技术和海藻酸钠/丝素蛋白生物墨水,可用于进一步构建血管化功能组织。

关键词: 海藻酸钠, 丝素蛋白, 生物3D打印, 同轴喷头, 中空管道结构, 生物墨水, 双交联网络, 可灌注血管结构

Abstract:

BACKGROUND: Construction of tissue engineering vascular structures is a key to the regeneration of complex tissues and organs. The use of three-dimensional printing technology to construct vascular structures has become a hotspot.
OBJECTIVE: A highly connected and perfusable vascular network was rapidly deposited by a three-dimensional bioprinter with a coaxial nozzle using alginate/silk fibroin bioink.
METHODS: A mixed solution containing 5% sodium alginate and 5% silk fibroin as the bio-ink, and a mixed solution containing 5% calcium chloride and 13% F127 as the crosslinker, alginate/silk fibroin gel was printed using a bio-printer and subjected to optical coherence tomography and scanning electron microscopy. The solution containing 5% sodium alginate and 5% silk fibroin mixed with the suspension of human liver cancer cells (C3A) as the bio-ink, and a mixed solution containing 5% calcium chloride and 13% F127 as the crosslinker, the cell-containing sodium alginate/silk fibroin gel was printed on a bio-printer. Then, the printed scaffold was placed in the medium for 24 hours, and then stained by Calcein-AM and observed under a fluorescence microscope.
RESULTS AND CONCLUSION: (1) Optical coherence tomography: a multi-layer composite hollow tube network formed the structure of the scaffold. The gel filament had a complete hollow structure, and the channels were interconnected. The structure was similar to the hollow passage of the blood vessel, which was beneficial to the transportation of nutrients and metabolic waste. (2) Scanning electron microscope: the hollow pipe structure with the diameter of about 400 μm arranged in parallel, and the pipe boundaries were clear. The microporous structure caused by the removal of F127 was formed between the boundaries. (3) Fluorescence microscope: the cells were evenly dispersed in the material on both sides of the channel, and the cells grew well in the scaffold with the survival rate of above 95%. (4) These results suggest that three-dimensional bioprinting technology based on coaxial nozzles and sodium alginate/silk fibroin bio-ink can be used to construct vascularized functional tissues in the future.

Key words: alginate, silk fibroin, three-dimensional bioprinting, coaxial nozzle, hollow channel structure, bio-ink, double crosslinked network, perfusable vascular network

中图分类号: